WKB approximation - definitie. Wat is WKB approximation
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is WKB approximation - definitie


WKB approximation         
METHOD FOR FINDING APPROXIMATE SOLUTIONS TO LINEAR DIFFERENTIAL EQUATIONS WITH SPATIALLY VARYING COEFFICIENTS
WKBJ approximation; Wentzel-Kramers-Brillouin approximation; WKB theory; Wentzel-Kramers-Brillouin method; Brillouin-Wentzel-Kramers approximation; Wentzel-Kramers-Brillouin-Jeffreys approximation; Wkbj approximation; Wkb approximation; WKB method; Wentzel–Kramers–Brillouin–Jeffreys approximation; Wentzel–Kramers–Brillouin approximation; Brillouin–Wentzel–Kramers approximation; WKB; JWKB approximation; Liouville–Green method; Liouville-Green; Liouville–Green; Liouville-Green method; JWKB; Wentzel-Kramers-Brillouin-Jeffries Approximation; Wkbj; Jeffreys-Wentzel-Kramers; Jwkb; WKBJ
In mathematical physics, the WKB approximation or WKB method is a method for finding approximate solutions to linear differential equations with spatially varying coefficients. It is typically used for a semiclassical calculation in quantum mechanics in which the wavefunction is recast as an exponential function, semiclassically expanded, and then either the amplitude or the phase is taken to be changing slowly.
Supersymmetric WKB approximation         
In physics, the supersymmetric WKB (SWKB) approximation is an extension of the WKB approximation that uses principles from supersymmetric quantum mechanics to provide estimations on energy eigenvalues in quantum-mechanical systems. Using the supersymmetric method, there are potentials V(x) that can be expressed in terms of a superpotential, W(x), such that
Two-stream approximation         
DISCRETE ORDINATE APPROXIMATION IN WHICH RADIATION PROPAGATING ALONG ONLY TWO DISCRETE DIRECTIONS IS CONSIDERED
Two stream approximation (radiative transfer); Two-stream approximation (radiative transfer); Two-Stream Approximation
In models of radiative transfer, the two-stream approximation is a discrete ordinate approximation in which radiation propagating along only two discrete directions is considered. It was first used by Arthur Schuster in 1905.